Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Death Differ ; 23(3): 430-41, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26292757

RESUMO

Cell-cycle inhibitors of the Ink4 and Cip/Kip families are involved in cellular senescence and tumor suppression. These inhibitors are individually dispensable for the cell cycle and inactivation of specific family members results in increased proliferation and enhanced susceptibility to tumor development. We have now analyzed the consequences of eliminating a substantial part of the cell-cycle inhibitory activity in the cell by generating a mouse model, which combines the absence of both p21(Cip1) and p27(Kip1) proteins with the endogenous expression of a Cdk4 R24C mutant insensitive to Ink4 inhibitors. Pairwise combination of Cdk4 R24C, p21-null and p27-null alleles results in frequent hyperplasias and tumors, mainly in cells of endocrine origin such as pituitary cells and in mesenchymal tissues. Interestingly, complete abrogation of p21(Cip1) and p27(Kip1) in Cdk4 R24C mutant mice results in a different phenotype characterized by perinatal death accompanied by general hypoplasia in most tissues. This phenotype correlates with increased replicative stress in developing tissues such as the nervous system and subsequent apoptotic cell death. Partial inhibition of Cdk4/6 rescues replicative stress signaling as well as p53 induction in the absence of cell-cycle inhibitors. We conclude that one of the major physiological activities of cell-cycle inhibitors is to prevent replicative stress during development.


Assuntos
Proteínas Inibidoras de Quinase Dependente de Ciclina/fisiologia , Inibidor de Quinase Dependente de Ciclina p21/fisiologia , Inibidor de Quinase Dependente de Ciclina p27/fisiologia , Replicação do DNA , Animais , Autorrenovação Celular , Quinase 4 Dependente de Ciclina/fisiologia , Genes Letais , Hemangiossarcoma/genética , Camundongos , Camundongos Knockout , Células-Tronco Neurais/fisiologia , Neoplasias Hipofisárias/genética , Estresse Fisiológico
2.
Oncogene ; 27(19): 2795-800, 2008 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-18037966

RESUMO

Thyroid hormone receptor-beta1 (TRbeta1) belongs to the ligand-inducible transcription factor superfamily. We have previously described that stable TRbeta1 expression impairs fibroblast proliferation diminishing levels and activity of the main regulators of the G(1)/S transition. To unmask the underlying molecular mechanism of this action, we have investigated the expression of cyclin D1, E and A2 upon serum stimulation in TRbeta1 expressing cells, finding a strong downregulation of their mRNAs, concomitant with low protein levels. The inhibition of the transcriptional activation in response to serum of these cyclins is differently exerted. For cyclin D1, we demonstrate that TRbeta1 represses its promoter as a consequence of the downregulation of c-jun levels, diminished AP-1 activation and loss of c-jun recruitment to its binding sites on cyclin D1 promoter. For cyclin E and A2, it is the impairment of the cyclinD/Rb/E2F pathway by TRbeta1 that prevents the activation of these two E2F target genes. Indeed, recruitment of E2F-1 to cyclin A2 promoter could not be detected. In summary, we propose that apo-TRbeta1 exerts its antiproliferative action through a mechanism that could constitute a model by which other nuclear receptors may control cell division.


Assuntos
Proliferação de Células , Ciclinas/antagonistas & inibidores , Ciclinas/genética , Regulação para Baixo/fisiologia , Inibidores do Crescimento/fisiologia , Receptores beta dos Hormônios Tireóideos/fisiologia , Transcrição Gênica/fisiologia , Animais , Ciclina A/antagonistas & inibidores , Ciclina A/biossíntese , Ciclina A/genética , Ciclina A2 , Ciclina D1/antagonistas & inibidores , Ciclina D1/biossíntese , Ciclina D1/genética , Ciclina E/antagonistas & inibidores , Ciclina E/biossíntese , Ciclina E/genética , Ciclinas/biossíntese , Camundongos , Células NIH 3T3 , Células Swiss 3T3
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...